

Mark Scheme (Results)

January 2020

Pearson Edexcel International Advanced Level In Physics (WPH14) Paper 01 Further Mechanics, Fields and Particles

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code WPH14_01_2001_ MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

For example:

(iii) Horizontal force of hinge on table top

66.3 (N) or 66 (N) and correct indication of direction [no ue]

[Some examples of direction: acting from right (to left) / to the left / West / opposite direction to horizontal. May show direction by arrow. Do not accept a minus sign in front of number as direction.]

This has a clear statement of the principle for awarding the mark, supported by some examples illustrating acceptable boundaries.

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the ms has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis.
- **1.3** Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- **1.4** Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 Incorrect use of case e.g. 'Watt' or 'w' will **not** be penalised.
- 2.3 There will be no unit penalty applied in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.
- 2.4 The same missing or incorrect unit will not be penalised more than once within one question (one clip in epen).
- 2.5 Occasionally, it may be decided not to penalise a missing or incorrect unit e.g. the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- **2.6** The mark scheme will indicate if no unit error penalty is to be applied by means of [no ue].

3. Significant figures

- 3.1 Use of an inappropriate number of significant figures in the theory papers will normally only be penalised in 'show that' questions where use of too few significant figures has resulted in the candidate not demonstrating the validity of the given answer.
- 3.2 The use of $g = 10 \text{ m s}^{-2}$ or 10 N kg^{-1} instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will be penalised by one mark (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹

4. Calculations

- 4.1 Bald (i.e. no working shown) correct answers score full marks unless in a 'show that'
- **4.2** If a 'show that' question is worth 2 marks then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
- **use** of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- **4.4** recall of the correct formula will be awarded when the formula is seen or implied by substitution.
- **4.5** The mark scheme will show a correctly worked answer for illustration only.
- **4.6** Example of mark scheme for a calculation:

'Show that' calculation of weight

 $7200 \text{ cm}^3 \times 0.70 \text{ g cm}^{-3} = 5040 \text{ g}$

 $5040 \times 10^{-3} \text{ kg} \times 9.81 \text{ N/kg}$

= 49.4 N

5. Graphs

- 5.1 A mark given for axes requires both axes to be labelled with quantities and units, and drawn the correct way round.
- 5.2 Sometimes a separate mark will be given for units or for each axis if the units are complex. This will be indicated on the mark scheme.
- A mark given for choosing a scale requires that the chosen scale allows all points to be plotted, spreads plotted points over more than half of each axis and is not an awkward scale e.g. multiples of 3, 7 etc.
- **5.4** Points should be plotted to within 1 mm.
 - Check the two points furthest from the best line. If both OK award mark.
 - If either is 2 mm out do not award mark.
 - If both are 1 mm out do not award mark.
 - If either is 1 mm out then check another two and award mark if both of these OK, otherwise no mark.
 - For a line mark there must be a thin continuous line which is the best-fit line for the candidate's results.

Answer	Mark
С	(1)
Answer	Mark
R	(1)
В	(1)
Answar	Mark
Allswei	Walk
В	(1)
Answer	Mark
Δ	(1)
	(1)
Answer	Mark
THISWEI	Wark
В	(1)
	1
Answer	Mark
D	(1)
Answer	Mark
Allswei	Walk
С	(1)
A	137
Answer	Mark
D	(1)
Answer	Mark
С	(1)
Answer	Mark
D	(1)
	Answer B Answer Answer B Answer D Answer C Answer C Answer C Answer

Question number	Answer	Mark
11	 Mo correct Deuterium correct (1) (1) 	
	• Neutrons correct (1) Example of equation	
	$^{96}_{42}\text{Mo} + {^{2}_{1}\text{H}} \rightarrow {^{95}_{43}\text{Tc}} + 3 {^{1}_{0}\text{n}}$	(3)
	Total for question 13	3

Question number	Answer		Mark
12	 Neutrons/Protons are baryons Baryons/Neutrons/Protons made of 3 quarks (or 3 antiquarks) Mesons made of quark and antiquark Electrons/muons are leptons p/n/e first generation Or muon 2nd generation Leptons/electron/muon/quarks fundamental Or proton/neutron/mesons not fundamental 	(1) (1) (1) (1) (1)	
	Total for question 12		6

Question number	Answer		Mark
13(a)	• Use of $E_{el} = \frac{1}{2}F\Delta x$ • $W = 0.12$ (J) Example of calculation $W = 0.5 \times 14 \text{ N} \times 0.017 \text{ m}$ W = 0.119 J	(1) (1)	(2)
13 (b)	 Use of E_{grav} = mgh Use of elastic potential energy = ½ mv² Or Use of grav potential energy = ½ mv² v_{head} = 6.1 (m s⁻¹) Or v_{toy} = 5.4 (m s⁻¹) (ecf from (a)) Use of p = mv P_{head} = 0.039 (kg m s⁻¹) and p_{toy} = 0.039 (kg m s⁻¹) and conclusion that momentum is conserved Or P_{head} = 0.039 (kg m s⁻¹) and p_{toy} = (0.039 kg m s⁻¹) and conclusion that momentum before = momentum after 	(1) (1) (1) (1)	(2)
	Example of calculation For head, max ke = E_{el} of spring $1/2 \times 0.0064 \text{ kg} \times v^2 = 0.119 \text{ J}$ max speed of head = 6.10 m s^{-1} max momentum of head = $0.0064 \text{ kg} \times 6.1 \text{ m s}^{-1}$ $p_{\text{head}} = 0.039 \text{ kg m s}^{-1}$ $E_{\text{grav}} = 0.0072 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 1.5 \text{ m} = 0.106 \text{ J}$ For whole toy, initial ke = 0.106 J $1/2 \times 0.0072 \text{ kg} \times v^2 = 0.106 \text{ J}$ For whole toy, initial $v = 5.42 \text{ m s}^{-1}$ For whole toy, initial momentum = $0.0072 \text{ kg} \times 5.42 \text{ m s}^{-1}$		
13 (c)	 Calculate E_K values or identify from part (a) and (b) (0.12 J before and 0.11 J after) (ecf) Conclude (kinetic energy is) not conserved because energy before is greater than energy after (accept a conclusion consistent with their answers) 	(1) (1)	(5)
	Example of calculation Head ke = $\frac{1}{2} \times 0.0064 \text{ kg} \times (6.1 \text{ m s}^{-1})^2 = 0.119 \text{ J}$ Whole toy ke = $\frac{1}{2} \times 0.0072 \text{ kg} \times (5.42 \text{ m s}^{-1})^2 = 0.106 \text{ J}$ Total for question 13		(2)

Question	Answer		Mark
Number 14(a)	• Use of $F = mv^2/r$	(1)	
17(a)	• $v = 9.78 \text{ (m s}^{-1}) (3 \text{ sf})$	(1)	
	Or $d = 29.6$ (m) (3 sf)		
	Or centripetal force = 1170 (N) (3 sf)		
	(accept $r = 14.8$ (m)) (3 sf)	(1)	
	(accept 7 - 14.8 (m)) (5 s1)	(-)	
	Example of calculation		
	$\frac{1180 \text{ N} = 185 \text{ kg} \times v^2 / 15 \text{ m}}{1180 \text{ N} = 185 \text{ kg} \times v^2 / 15 \text{ m}}$		
	$v = 9.78 \text{ m s}^{-1}$		(2)
14(b) (i)	• State $R \sin \theta = mv^2/r$	(1)	(2)
11(0)(1)	• State $R \cos \theta = mg$	(1)	
	• Divide $R \sin \theta$ by $R \cos \theta$ and use $d/2$	(1)	
	Or	(1)	
		(1)	
	• Vector diagram with normal contact force as hypotenuse	(1)	
	• Divide mv^2/r by mg	(1)	
	• Substitute $r = d/2$	(1)	(2)
14(1)(*)	TT 0 0 2 2 / 1	(1)	(3)
14(b)(ii)	• Use of $\tan \theta = 2v^2 / gd$	(1)	
	• Angle = 33°	(1)	
	Example of calculation		
	$\tan \theta = 2 \times (9.72 \text{ m s}^{-1})^2 / 9.81 \text{ N kg}^{-1} \times 30 \text{ m} = 0.642$		
	$\theta = 32.7^{\circ}$		(2)
14 (c)	Max 2 points		
	Higher speeds can be used	(1)	
	A smaller track can be used	(1)	
	The kart is less likely to skid	(1)	
	The (maximum) centripetal force is larger	(1)	(2)
	Total for Question 14		9

Question number	Answer					Mark
15(a)	Or	ollisions with ai air doesn't stop a		from reachir	(1) ng the (1)	(1)
15 (b)*	Structured answ Marks are awar structured and structured answer Number of indicative marking points seen in answer 6 5 4 3 2 1 0	ssesses a student's ver with linkages and reded for indicative of shows lines of reasonable shows how the ent. Number of marks awarded for indicative marking points 4 3 2 1 0 cable shows how the ent.	d fully-sustained recontent and for howoning. e marks should be Max linkage mark available 2 2 1 0 0 0	w the answer is awarded for Max final mark 6 5 4 3 2 1		
	and lines of rea		e marks should be	awarued for St	nucture	(6)

	Number of marks awarded for structure of answer and sustained line of reasoning
Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2
Answer is partially structured with some linkages and lines of reasoning	1
Answer has no linkages between points and is unstructured	0

Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points which is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).

Indicative content:

- Most alpha particles passed straight through the gold foil
- Some alpha particles were deflected by small angles
- Either model would predict small or zero deflections because in the nuclear model the atom is mostly empty space and in the 'pudding' model matter is too spread out
- A few proportion of alpha particles were deflected by more than 90°
- This did not fit the plum pudding model as this deflection requires a high concentration of charge (to provide a large force)

Or

This could only be explained by the nuclear model as this deflection requires a high concentration of charge to (provide a large force)

 This did not fit the plum pudding model as this deflection requires a high concentration of mass (so that the alpha particle is deflected and not the gold nucleus)

Or

This could only be explained by the nuclear model as this deflection requires a high concentration of mass (so that the alpha particle is deflected and not the gold nucleus)

Total for question 15

7

Question number	Answer	Mark
16 (a)	 Negative because the direction of field is direction of force on a positive charge Or Field downwards means negatively charged Earth and negative repels negative Or Negative because the force is in the opposite direction to the electric field 	(1)
16 (b)	• Use of $F = EQ$ (1) • Use of $W = mg$ (1) • $F - W$ to determine resultant force (1) • Use of $F = ma$ (1) • $a = 2.2 \text{ m s}^{-2}$ (1) $\frac{\text{Example of calculation}}{F = 120 \text{ V m}^{-1} \times 3.00 \times 10^{-7} \text{ C} = 3.60 \times 10^{-5} \text{ N}}$ $W = 3.00 \times 10^{-6} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 2.94 \times 10^{-5} \text{ N}$ Resultant force = $3.60 \times 10^{-5} \text{ N} - 2.94 \times 10^{-5} \text{ N} = 6.57 \times 10^{-6} \text{ N}$ $a = 6.57 \times 10^{-6} \text{ N} \div 3.00 \times 10^{-6} \text{ kg}$ $= 2.19 \text{ m s}^{-2}$	(5)
16 (c)	• Use of $E = Q/4\pi\epsilon_0 r^2$ Or Use of $E = kQ/r^2$ (1) • Use of $A = 4\pi r^2$ (1) • Charge = 1.1×10^{-9} C (m ⁻²) (1) Example of calculation $E = kQ/r^2$ $120 \text{ V m}^{-1} = 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \times Q / (6.4 \times 10^6 \text{ m})^2$ $Q = 5.47 \times 10^5$ C $Q/A = 5.47 \times 10^5$ C $/ 4\pi \times (6.4 \times 10^6 \text{ m})^2$ $= 5.47 \times 10^5$ C $/ 5.15 \times 10^{14}$ m ² $= 1.1 \times 10^{-9}$ C m ⁻²	
	Total for question 16	(3)

Question	Answer	Mark
number		
17(a)	• Use ratio of resistors to determine initial p.d.	
	across LED or final p.d. across capacitor	
	Or Use of $I = V/R$ to determine initial current	
	and final current (1)	
	• Use of $V = V_0 e^{\frac{-t}{RC}}$	
	Or Use of $I = I_0 e^{\frac{-t}{RC}}$ (1)	
	• $C = 0.56 \mathrm{F}$ (1)	
	• Need to choose 0.58 F so it doesn't take less	
	than the required time (1)	
	Example of calculation	
	Initial p.d. across LED = 12 V × 340 $\Omega/(860 \Omega +$	
	340Ω)	
	= 3.4 V	
	V across LED proportional to V across capacitor 1.4 V = 3.4 V e $^{-(10 \times 60 \text{ s}/1200 \Omega \times C)}$	
	\bullet C = 0.56 F	(4)
17 (b)	• From the graph, as p.d. decreases the resistance	
	increases (1)	
	• Therefore the time constant increases (1)	
	• The light will take longer to switch off (1)	
		(3)
17(c)	• The capacitor is an energy store (1)	
	• The overall charge on the capacitor is zero (1)	
	• The capacitor separates charge (1)	
		(3)
	Total for question 17	10

Question Number	Answer		
18(a)	(Rotating coil in field causes) changing (magnetic) flux linkage with coil	(1)	
	Or wires/coils cut lines of (magnetic) flux	(1)	
	• E.m.f. induced	(1)	
	Complete circuit, so current in circuit		
	• p.d./current produced changes in direction (as opposite parts of the coil switch sides), so LED only shines when current is flowing in one		
	direction	(1)	(4)
18(b)(i)	Period doubled	(1)	
. , , ,	Amplitude halved	(1)	(2)
18(b)(ii)	(Half angular velocity) so takes twice as long to turn so period		, ,
	doubled	(1)	
	• (Half angular velocity) so rate of change of flux halved so e.m.f		
	halved	(1)	(2)
18(b)(iii)	• Use of $\varphi = BA$	(1)	
	• Period (from graph) = 0.2 s	(1)	
	• Use of $\varepsilon = N \mathrm{d} \varphi / \mathrm{d} t$	(1)	
	• $N = 400 \text{ turns}$	(1)	
	Example of calculation		
	$3.2 \text{ V} = N \times 0.083 \text{ T} \times 0.0048 \text{ m}^2 / 0.25 \times 0.2 \text{ s}$		
	N = 402		(4)
	Total for question 18		12

Question			
Number			
19(a)(i)	• Use of $r = p/Bq$ and $p = mv$	(4)	
	Or Use of $F = Bqv$ and $F = mv^2/r$	(1)	
	• Use of $v = 2\pi r/t$	(1)	
	• Algebra leading to $t = 2 m \pi / Bq$	(1)	
	Example of derivation		
	r = p/Bq		
	p = mv so r = mv/Bq		
	$v = 2\pi r/t$ so $r = m2\pi r/Bqt$		
	Therefore $t = 2 m \pi / Bq$		
			(3)
19(a)(ii)	• Time independent of speed Or Time independent of radius	(1)	
	So particles take constant time to complete circular path		
	Or so particles spend the same time in each dee	(1)	
	So a fixed frequency can be used for the p.d.	(1)	
	• because the p.d./field across the gap will be in the correct direction to		
	increase the speed of the particles as they cross each time	(1)	
			(4)
19(b)	• Use of $t = 2\pi m/Bq$	(1)	
	• Use of $E_{\rm K} = \frac{1}{2} mv^2$	(1)	
	• Use of $W = QV$	(1)	
	Total energy / accelerating p.d. for number of passes	(1)	
	• $1.9 \times 10^{-6} \mathrm{s}$	(1)	
	Example of calculation		
	$t = 2\pi \times 1.67 \times 10^{-27} \text{ kg} / 1.6 \text{ T} \times 1.6 \times 10^{-19} \text{ C}$		
	$=4.1 \times 10^{-8} \text{ s}$		
	$E_{\rm K} = \frac{1}{2} \times 1.67 \times 10^{-27} \mathrm{kg} \times (1.5 \times 10^6)^2$		
	$= 1.88 \times 10^{-13} \mathrm{J}$		
	$= 1.88 \times 10^{-13} \text{ J} \div 1.6 \times 10^{-19} \text{ C} = 1.17 \times 10^{6} \text{ eV}$		
	No of passes = $1.17 \times 10^6 \text{ eV} \div 13\ 000 \text{ eV} = 90.3$		
	2 passes per cycle, so 45.2 cycles		
	$45.2 \times 4.1 \times 10^{-8} \text{ s} = 1.85 \times 10^{-6} \text{ s}$		
	(or use 45.5 or 46)		(5)
19(c)			
	High energy so particles have high momentum	(1)	
	High momentum so that (de Broglie) wavelength is small	(1)	
	Studying nucleons requires wavelengths of the order of nucleon size	(1)	
	, is the state of	• /	(3)
	Total for question 19		15

